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Abstract—Fingerprinting indoor localization systems have been
studied in different perspectives in the past decades; however,
a vitally important piece in the puzzle is still missing: how
does the system scale with the number of users? In this paper,
we present a theoretical study of the issue, where the upper
and lower bound of the system’s localization reliability with
respect to the number of users are derived. Results of our
theoretical analysis can be verified by experiments thus can
provide meaningful guidance for practical system design, which is
in contrast to the scaling-law work utilizing asymptotical analysis
that is valid only under unverifiable extreme conditions. The
theoretical and experimental results of our work reveal two
interesting observations, which shed light on the insight into the
scalability of the fingerprinting localization system: First, the
localization reliability drops dramatically before the number of
users increases to a critical point and then decreases smoothly,
where the critical point tends to appear when the number of
users equals the number of access points (APs) deployed in the
service region; second, even if the number of users approaches to
infinity, the fingerprinting localization system still retains certain
level of reliability.

I. INTRODUCTION

Extensive efforts have been devoted to wireless fingerprint-
ing based indoor localization in the past two decades [1], [3]–
[10], [12], which leverages the existing Wi-Fi access points
(APs) thus saves the cost of deploying dedicated infrastructure
particularly for localization. The basic idea of fingerprinting
localization is to utilize the spatial feature of wireless radio
signals from Wi-Fi APs to distinguish one location from
another, where the specific feature is termed as the wireless
fingerprint. The mostly used fingerprint is the received signal
strength (RSS) [3]–[5], [9], [10], [12], which can be handily
obtained from the programmable interface of the mobile
device. The fingerprinting localization approach is normally
divided into two phases, where the radio map associating the
location information with RSS fingerprints is constructed in
the offline phase, and users’ locations are estimated in the
online phase by matching the user’s reported fingerprints with
those stored in the offline phase.

Although recent years have witnessed localization systems
achieving centimeter even millimeter level accuracy, which
utilize channel state information (CSI) of wireless signals
[14], [15], RFID [16] and acoustic signals [17], such systems
require special infrastructures such as APs capable of retriev-
ing CSI, high-end RFID readers and acoustic anchor points.
Consequently, the wireless fingerprinting based localization
system seems more suitable for large-scale deployment [2],

[18]–[20]. While a large body of work has been available to
reveal insights into the fingerprinting localization in different
perspectives, such as localization accuracy and reliability [8],
[12], [21], [24], [25], influence of user mobility [13] and
crowdsourcing based radio map construction [19], [20], a
vitally important piece in the puzzle is still missing if large-
scale deployment is the target: how does the fingerprinting
localization system scale with the number of users?

In particular, people are moving around in the indoor
space, which continuously changes the radio propagation
environment. Intuitively, the more human bodies are within
the space, the more serious the consequent shadowing and
multipath effects are, which results in more complicated radio
propagation environment and more deviation in radio map
constructed in the offline phase to the current reality. Although
the human body shadowing effect is investigated for the
purposes of radio propagation modeling and antenna design
[26]–[28], the scalability of fingerprinting localization systems
is still unknown.

In this paper, we study the scalability issue in a theoretical
perspective, where the upper and lower bound of the system’s
localization reliability with respect to the number of users are
derived. Our contributions are as following:

First, we formulate the scalability issue into the problem
of finding how the localization reliability deteriorates with
respect to the number of users N (§Section II). The finger-
printing localization approach can be modeled as a mapping
from the fingerprints sample space to the physical space,
where it has been found that a user can be localized within δ
neighborhood of the real location only if the user’s reported
fingerprints fall in certain area E of the sample space [11],
[12]. Based on the theory, we infer that once the localization
system is deployed, the area E with respect to the specific
radio propagation environment is determined. When users
appear and move around in the service area, the radio prop-
agation environment change makes characteristics of wireless
fingerprints such as the mean and variance vary, but the system
still uses the predetermined E to preform location estimation.
Then the inconsistency between the predetermined E and
the changed fingerprints characteristics incurs deterioration of
localization reliability, where more users result in more serious
inconsistency and deterioration.

Second, we present mathematical expressions of the dete-
riorated localization reliability R′ with respect to the number
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of users N , which is obtained by two-step derivations. The
first step is to find the upper and lower bound of R′ with
respect to the number of impacted APs m; this involves
performing integration of a Gaussian probability distribution
function (PDF) with only partial information available over a
hard-to-profile high-dimensional E in the fingerprints sample
space, which is realized through multiple times of coordinate
system construction and transformation (§Section III). The
second step is to find the bounds of m with respect to
the number of users N , where the challenge is that it is
difficult to determine the interference region associated with
the AP and the user. We address the issue by designing simple
measure-and-infer procedures, based on which we can obtain
the result of N -user case with experimental results of 2-user
case (§Section IV). Our main theoretical result (§Section V)
can be verified by experiments thus can provide meaningful
guidance for practical system design, which is in contrast to
the scaling-law work utilizing asymptotical analysis that is
valid only under unverifiable extreme conditions.

We present our experimental and numerical results to verify
the theoretical analysis; we reveal two interesting observations,
which shed light on the insight into the scalability of the
fingerprinting localization system (§Section VI): First, the
localization reliability drops dramatically before the number of
users increases to a critical point and then decreases smoothly,
where the critical point tends to appear when the number
of users equals the number of access points (APs) deployed
in the service region; second, even if the number of users
approaches to infinity, the fingerprinting localization system
still retains certain level of reliability. Due to limitation of the
space, details of mathematical derivations and proofs are put
in our technical report [36].

II. PROBLEM FORMULATION

A. Interference Region
We consider an indoor space denoted by S, where there are

M APs distributed along the boundaries of S and N users.
As is done by many fingerprinting localization systems [1],
[2], we divide S into small square grids, where the center
of each grid is set as a reference point (RP). In the offline
phase, the fingerprints are measured on RPs; in the online
phase, the nearest RP to the user’s real location is supposed
to be the system’s estimated location. If a user performs
RSS measurement with respect to an AP, then a transmitter-
receiver (T-R) pair is formed. Due to the line-of-sight blockage
and mutipath effects, when a human body appears in some
grids between the T-R pair, the RSS measurement will be
impacted. We term those grids as the interference region of
the corresponding T-R pair. For users, we have no assumption
of the specific probability model describing how likely they
will appear in which location, but we assume that the same
model applies to all the users.

B. Localization Reliability Model
We use a 2-D vector r⃗ to represent a location in S, then

the RSS observed at r⃗ can be modeled by a random variable

[11], [12]:

P(r⃗) = µ(r⃗) + σY, (1)

where µ(r⃗) represents how the mean of RSS readings varies
with respect to locations, Y is the normalized Gaussian random
variable with Y ∼ N (0, 1) and σ is a constant representing
the variance of the received signal [12]. Modeling RSS as
a Gaussian distributed random variable is adopted in a large
number of work in the literature [1], [3], [6], [29]–[31], where
the rationale of the modeling is verified with comprehensive
experimental results [12].

The location estimation process is essentially a mapping
from the fingerprints sample space to the physical space,
where it has been found that a user can be localized within δ
neighborhood of the real location only if the user’s reported
fingerprints fall in certain area E of the sample space [11],
[12]. We use the simple example as follows to show the
modeling approach.

Fig. 1. Reliability model.

Consider an 1-D physical space where the single AP is
located at one end, as shown in Fig. 1; the corresponding
sample space is shown in the upper part of Fig. 1, where
each location is distinguished by the observed mean value
of the RSS fingerprints µ, and the PDF of the fingerprints
observed at the location following Gaussian distribution based
on Eq. (1). According to the principle of maximum likelihood
estimation (MLE), the user can be localized in the region Q
only if the reported RSS fingerprints fall within the region
E in the sample space as shown in Fig. 1. Corresponding
reliability R can be obtained by integrating Gaussian PDF over
region E in the sample space. The localization in 2-D physical
space with high-dimensional sample space is modeled in the
similar manner but presents more mathematical challenges. It
is proved in [11], [12] that region E in the high-dimensional
sample space is a hyper-cylinder with the orthogonal cross-
section in the shape of an ellipse.

Our work in this paper leverages the localization reliability
model in [11], [12]; however, our focus is on scalability, which
is not mentioned in [11], [12]. Moreover, we consider the
practical localization scenario, where fingerprints are collected
only at RPs [1], [3]–[10]. We define the localization reliability
as the probability that a user can be correctly localized in a
square region surrounded by the other 8 RPs, and the accuracy
is the unit length of the grid. This is in contrast to the model
in [11], [12], where it is implicitly but impractically assumed
that each point in the indoor space has to be surveyed.



C. Localization Performance Deterioration by Human Body
Blockage.

The reliability and accuracy model in [11], [12] as described
above implicitly assumes that the PDF representing each
location in the offline does not change in the online phase.
However, the radio propagation environment in the two phases
is factually different in practice, where an important reason
is the human body blockage effect. Comprehensive studies
show that the mean and the variance of the wireless signals
that are observed at a location will change, if the signal’s
propagation path is changed from the line-of-sight path to the
non-line-of-sight one [32], [33]. The deviation of the mean and
the variance is especially notable with presence of the human
body blockage [26]–[28]. The deviation makes the shape of the
PDF represent the same location r⃗ change in the two phases.
Figure 1 shows an example of the blockage effect, where the
PDF in the offline phase is fr⃗ while it becomes f ′

r⃗ in the
online phase.

D. Strategy of Deriving the Scalability
Consider a fingerprinting localization system, we assume

that there is only one user performing the site survey in the
offline phase. Then the fingerprints database is constructed
without being impacted by other people. If the other N − 1
users show up, the blockage effect will deteriorate the system
performance by reducing the localization reliability. Since the
fingerprints database remains unchanged after the user’s site
survey, then the region E is static. We use R′ to denote the
system reliability after show-up of the other N−1 users, which
can be obtained by integrating f ′

r⃗ over E.
Although the deformation of f ′

r⃗ with respect to fr⃗ is
unpredictable, we intuitively have R′ ≤ R, which indicates
the deterioration in localization performance. The physical
meaning is that the mismatch of fingerprints’ features in the
two phases can not result in higher localization reliability;
mathematically, due to the PDF nature of f ′

r⃗ as shown in Fig. 1,
it is impossible for the shape of f ′

r⃗ to be both higher and wider
than that of fr⃗, and the peak of f ′

r⃗ could deviate from the mid-
point of the integration domain, then the result of integration
for f ′

r⃗ over E is no greater than that for fr⃗. However, due to
the abstraction and high dimension of the sample space and
the unknown parameters of the Gaussian PDFs, finding the
expression of R′ will be challenging. Moreover, the PDF can
be changed only if some users are standing in the influence
region. The more users are presenting in the indoor space,
the more likely there are some users standing in the influence
region of some T-R pairs, thus more reliability deterioration
can occur.

Consequently, resolving the scalability issue of the fin-
gerprinting indoor localization system is essentially finding
how the localization reliability of the system deteriorates
with respect to the number of users N . Situations such that
more than one people are present when the site survey is
being performed, or the database is updated periodically are
purposely not taken into account in our model, because such
detailed scenarios can be easily extended from our model.

Fig. 2. Revised localization reliability model.

III. LOCALIZATION RELIABILITY DETERIORATION BY
BLOCKAGE

Our localization reliability analysis is based on the model as
shown in Fig. 2. It is supposed that the user’s actual location
in the physical space is at Q0. In order to make the system
accurately estimate the user’s location, the user’s reported
RSSs must be the measurement outcome which falls into the
region E. The orthogonal cross-section of E projected on a
plane is illustrated in the rightmost sub-figure of Fig. 2. With
similar derivation process as shown in [11], [12], the resulted
reliability R can be obtained. For the convenience of readers,
we put the brief derivation process in our technical report [36],
so that the methodology used in the following section can be
understood. The reliability R factually reflects the localization
performance when there is no blockage; however, when users
come into the service region, the PDF of the fingerprints
observed at r⃗ changes from fr⃗ into f ′

r⃗, but the event E does
not change since it has been determined in the offline phase.
We are to derive the localization probability with the existence
of the users’ blockage effect, and then find the upper and lower
bound of the reliability deterioration.

A. Localization Reliability with Blockage
Considering a T-R pair associated with an influence region,

if another person appears in the influence region, the RSS
value observed by the user is actually profiled by f

′
(P⃗ ). The

resulted reliability becomes:

R′ =

∫
E

f
′
(P⃗ )dP⃗ =

∫
E

M∏
i=1

1

σ
′
i

√
2π

e
− (Pi−µ

′
i(r⃗))

2

2σ
′2
i dP1...dPM ,

where Pi is the user’s measurement of the RSS with respect to
APi, µ′

i(r⃗) and σ′
i represent the deviated mean and standard

variance resulted from the human body blockage effect, in
contrast to the parameters µi(r⃗) and σi without blockage.
Note that E does not change since the system still uses
the fingerprints database constructed by the single user or
survey worker, that is, E = {o⃗|h⃗j(o⃗ − h⃗j) ≤ 0, j =
1, ..., 8, o⃗ = (Y1, ..., YM )T }, which is rigorously derived in
[36]. For the convenience of derivation, we apply a new

coordinates system to the sample space. Let Y
′

i =
Pi−µ

′
i

σ
′
i

, then

Y
′

i = σi

σ
′
i

Yi +
µi−µ

′
i

σ
′
i

∆
= AiYi +Bi, where it is straightforward

that Ai > 1 and Bi > 0, then

R′ =

∫
E

M∏
i=1

1√
2π

e−
Y

′
i

2

2 dY
′

1dY
′

2 ...dY
′

M . (2)



The coordinates transformation provides a neat expression of
f

′
(P⃗ ), but also changes the form of E. We must figure out

the expression of E, after which R′ can be found.
We denote o⃗′ = (Y

′

1 , Y
′

2 , ..., Y
′

M )T = (A1Y1 +
B1, ..., AMYM + BM )T , and we need to find the form of
restrictions to the event E w.r.t o⃗′. We define the following
vector w.r.t. the coefficient Ai and Bi, i = 1, 2, ...,M . For
any j ∈ {1, 2, ..., 8}, we define l⃗ = (B1

A1
, B2

A2
, ..., BM

AM
)T ,

H⃗j = (
µ1(r⃗j)−µ1(r⃗)

2σ1A1
, ... ,µM (r⃗j)−µM (r⃗)

2σMAM
)T and h⃗

′
j = kjH⃗j ,

where kj is a constant, kj =
|h⃗j |2+l⃗h⃗j

|H⃗j |2
.

We then have: H⃗1 =
( |∇µ1(r⃗)|

2σ1A1
εcos(ϕ1), ...,

|∇µM (r⃗)|
2σMAM

εcos(ϕM ))T , H⃗2 = H⃗1 +H⃗3,
H⃗3 = ( |∇µ1(r⃗)|

2σ1A1
εsin(ϕ1), ...,

|∇µM (r⃗)|
2σMAM

εsin(ϕM ))T ,H⃗4 =

−H⃗1 + H⃗3, H⃗5 = H⃗3, H⃗6 = −H⃗1 − H⃗3, H⃗7 = −H⃗3,

H⃗8 = H⃗1 − H⃗3 and h⃗
′
j = kjH⃗j , j = 1, 2, ..., 8. Moreover,

we have kj + kj+4 =
2|h⃗j |2

|H⃗j |2
for j = 1, 2, 3, 4 and

0 < kj + kj+4 ≤ 2, according to the definitions of h⃗j and
H⃗j .

Based on the definitions and analysis above, it is interesting
to find

h⃗
′
j(o⃗

′ − h⃗
′
j) = kj(H⃗j o⃗

′ − kjH⃗j
2
)

= kj [(h⃗j o⃗+ l⃗h⃗j)−
|h⃗j |2 + l⃗h⃗j

|H⃗j |2
· H⃗j

2
]

= kj(h⃗j o⃗− |h⃗j |2) = kj h⃗j(o⃗− h⃗j), (3)

which establishes the connection between E in the two co-
ordinates systems. Then we have the new expression of E:
E = {o⃗′|kj h⃗j(o⃗′ − h⃗j) ≤ 0, j = 1, ..., 8, o⃗′ = (Y ′

1 , ..., Y
′
M )T }.

It can be seen that f(P⃗ ) and f
′
(P⃗ ) have the same form

although they are in different coordinates systems. And what
we need to do is to find the event E in the new coordinates
system {Y ′

i }. Since h⃗
′
j = kjH⃗j , j = 1, 2, ..., 8, the coefficient

kj factually reflects how the blockage effect will impact the
event E, which results in R′. Figure 3(a), (b), (c) respectively
show three possible scenarios how the event E can be im-
pacted by users: a) If there is a single user in the system just
like the scenario of site survey, then the fingerprints are not
impacted and k1 = k2 = ... = k8 = 1, which means that the
shape and location of E in sample space are the same as shown
in Fig.2; b) if the RSS readings are insignificantly influenced,
then kj > 0, j = 1, 2, ..., 8, and the shape and position of E
will change but in an insignificant manner, which is due to
the relationship among E’s boundaries; c) if k5 < 0, both the
shape and location of E will change significantly.

Then we rotate the coordinates system {Y ′

i } to another
orthogonal basis {g⃗i}, i = 1, 2, ..., n, where g⃗1 is parallel to
H⃗1 and g⃗2 is in the plane Λ which is determined by H⃗1 and
H⃗3. We use β to denote the angle between H⃗1 and H⃗3, then
H⃗1 = |H⃗1| · g⃗1, H⃗3 = |H⃗3|cosβ · g⃗1 + |H⃗3|sinβ · g⃗2. Suppose
that o⃗′ =

∑
i

aig⃗i, then we have −k5|H⃗1| ≤ a1 ≤ k1|H⃗1| and

L
′ ≤ a2 ≤ H

′
, where

Fig. 3. Influence of blockage effect on E in the sample space.

L
′
=− a1 cotβ +

1

sinβ
·max{−k7|H⃗3|,

− k6|H⃗3| −
|H⃗1|
|H⃗3|

[k6(|H⃗1|+ 2|H⃗3| cosβ) + a1],

− k8|H⃗3| −
|H⃗1|
|H⃗3|

[k8(|H⃗1| − 2|H⃗3| cosβ)− a1]}, (4)

H
′
=− a1 cotβ +

1

sinβ
·min{k3|H⃗3|,

k2|H⃗3|+
|H⃗1|
|H⃗3|

[k2(|H⃗1|+ 2|H⃗3| cosβ)− a1],

k4|H⃗3|+
|H⃗1|
|H⃗3|

[k4(|H⃗1| − 2|H⃗3| cosβ) + a1]}. (5)

Since |o⃗′ | =
n∑

i=1

Y
′

i

2
=

n∑
i=1

ai
2, which implies the norm of o⃗′

is unchanged after the rotation of the coordinate system, then
the probability that the system correctly estimates the user’s
location is

R′ =

∫
E

M∏
i=1

1√
2π

e−
Y

′
i

2

2 dY
′

1dY
′

2 ...dY
′

M

=

∫ k1|H⃗1|

−k5|H⃗1|

∫ H
′

L′

∫ +∞

−∞
...

∫ +∞

−∞

M∏
i=1

1√
2π

e−
ai

2

2 da1...daM

=

∫ k1|H⃗1|

−k5|H⃗1|

1√
2π

e−
a1

2

2 da1 ·
∫ H

′

L′

1√
2π

e−
a2

2

2 da2. (6)

B. Finding Bounds of R′

Fig. 4. Finding bounds of R′.

We can see that Eq. 6 is the expression of localization
reliability, where we transfer the deviation of the Gaussian
PDF due to the environment change to that of the area E.
Obtaining the concrete expression of R′ requires to know the
exact amount of the deviation incurred by the environment
change as illustrated in Fig. 3, which is almost impossible
in practice. However, we could manage to find the upper
and lower bounds of R′, so that the reliability deterioration
incurred by the environment change can be quantified.

We here use a simple example in the 1-D sample space to
explain our basic idea for deriving the bounds, which is as



shown in Fig. 4. We know that the event E is determined in
the offline phase, but the event E represented by the blue line
segment in the figure is actually the event in the transformed
coordinate systems. The coordinate system transformation
operations described in the previous subsection could change
both the size and the position of E, as shown in the Fig. 3,
which is to have a neat expression of f ′. The reliability R′

can be obtained by performing integration of f ′ over E,
where it is relatively easy to find the size but difficult to
find the displacement of E in mathematical derivations. The
difficulty is particularly significant when performing high-
dimensional integration, where the specific derivation process
to be presented in following subsections can provide a better
understanding.

Although it is difficult to find the displacement of E with
respect to the origin of the coordinate system as shown in
Fig. 4, it is straightforward to see that the upper bound of
R′ can be obtained if we move E left to the position of the
line segment in red. For the lower bound, it is obvious that 0
is an option, which however provides negligible information.
We want to find the greatest computable lower bound so
that the reliability can be tightly bounded. In the process of
mathematical derivation, we keep moving the event E towards
the right until the bound is found. This is the basic idea how
we derive the bound of R′. For our problem, obtaining the
upper and lower bounds is factually to carry out the process
above with a 2-D Gaussian PDF, which is very complicated
and long thus put in the technical report [36] due to limitation
of the space. The resulted bounds are as following:

Theorem 1. For a localization system with the fingerprinting
approach, if there are m APs influenced by the human body
blockage effect, then

e−Θ(g(m))(1− e−Θ(g(m))) ≤ R′(E) ≤ 1− e−Θ(g(m))1, (7)

where g(m) = M2

(1−A2)·m+A2·M ; m is the number of APs that
are blocked; A is the greatest ratio of σi and σ′

i with A < 1.

In the numerical and experimental results to be presented
later, we adopt the result in [32], [33] and let A = 3

4 .

IV. NUMBER OF IMPACTED ACCESS POINTS W.R.T.
NUMBER OF USERS

At first, we consider to use the specific shape of the inter-
ference region to derive the relationship between the number
of APs m and the number of users N . We note that existing
work implicitly models the interference region in the shape of
the ellipse [34], [35]. However, our experiments which can be
seen in the technical report [36] show the ellipse model is too
theoretical and has a high requirement for the environment. In
practice, the interference region can not always be modeled as
ellipse.

1We abuse Θ(·) in this paper and modify the definition as following:
f(n) = Θ(g(n)) means f(·) is upper and lower bounded by g(·), that is,
∃k∗1 , k∗2 > 0,∀n > 0 : k∗1 · g(n) ≤ f(n) ≤ k∗2 · g(n). Note that the bounds
are valid for any given value of n. They are not asymptotical bounds, and
there is no need for n → ∞, which is in contrast to the traditional definition
of Θ.

Another method to find the number of impacted APs by
different numbers of users is to conduct experiments; however,
experimenting all scenarios with different combinations of the
number of users and the positions of users can be labor-
intensive. In this section, we present our method to find the
number of impacted APs by a number of users, where there is
no need for knowledge of the specific shape of the interference
region or labor-intensive experiments.

A. Bounding the Number of Impacted APs
Due to the difficulty for accurate modeling the shape of

the influence region, we switch to another method to resolve
the issue. It is interesting to find that the number of impacted
APs in the N -user case can be derived from the simple 2-user
case, the result of which can be easily obtained with simple
experiments.

Assume that the location of a normal user is denoted by
r⃗, and the interferer’s location is r⃗∗, which causes m̂ APs
to be impacted. This means that the interferer enters into the
interference regions of the T-R links between the normal user
and those m̂ APs. As the APs’ locations are fixed, the influence
regions of the T-R links are determined by r⃗; therefore, m̂ is
determined by r⃗ and r⃗∗, which can be denoted by

m̂ = m̂r⃗(r⃗∗),∀r⃗ ∈ S, (8)

where m̂r⃗(·) is determined by the shape of the influence
region. It is straightforward that m̂ is a random variable with
cumulative distribution function (CDF):

Fr⃗(x) = P (m̂ ≤ x) = P (r⃗∗ ∈ {r⃗∗|m̂r⃗(r⃗∗) ≤ x}). (9)

Theorem 2. For a localization system with N users within
the region S and M APs distributed along the region’s
boundaries, if m out of M APs are impacted by human body
blockage effect, then

(a+ 1)(1− bN−1) ≤ m ≤ min{c(N − 1),M}, (10)

where a, b, c are determined by the practical radio propagation
environment, and can be obtained through the procedures to
be presented in Section IV-B.

Proof: Given a normal user in the system, the rest of the
N − 1 users can be regarded as interferers denoted by Ui,
i = 1, 2, ..., N − 1. We use mi to denote the number of APs
which have been impacted by Ui, and m is the total number
of APs that have been impacted, then it is straightforward that{

m1 +m2 + ...+mN−1 ≥ m,

max{m1,m2, ...,mN−1} ≤ m.
(11)

Since m1,m2, ...,mN1
are all random variables, we can trans-

form the inequality set (11) into following:{
E(m1 +m2 + ...+mN−1) ≥ m,

E(max{m1,m2, ...,mN−1}) ≤ m.
(12)

• Upper bound of m.
According to the inequality set (12), we have



m ≤ E(m1 +m2 + ...+mN−1) =

N−1∑
i=1

E(mi) (13)

Since all the users share the show-up probability in a given
position, E(m1) = E(m2) = ... = E(mN−1) = c and c is
independent of N and m, then

m ≤
N−1∑
i=1

E(mi) = (N − 1)E(m1) = c(N − 1),∀N. (14)

• Lower bound of m.
For convenience of presentation, we use F (x) to present

Fr⃗(x). By the inequality set (12), we have

m ≥ E(max{m1,m2, ...,mN−1}).

If m̃ = max{m1,m2, ...,mN−1}, then m ≥ E(m̃). We know
that

P (m̃ ≤ x) = P (m1 ≤ x,m2 ≤ x, ...,mN1 ≤ x)

=

N−1∏
i=1

P (mi ≤ x) = FN−1(x), (15)

where x ∈ {0, 1, ...,M}.
In particular, F (M) = P (mi ≤ M) = 1, thus FN−1(M) =

1, and ∀N

E(m̃) =

M∑
k=0

k · P (m̂ = k)

=

M∑
k=0

k · [P (m̂ ≤ k)− P (m̂ ≤ k − 1)]

=

M∑
k=0

k · [FN−1(k)− FN−1(k − 1)]

= M · FN−1(M)− FN−1(M − 1)− ...− FN−1(0)

= M − FN−1(M − 1)− ...− FN−1(0), (16)

Besides the basic properties of common CDFs, we need to
pay particular attention to the following properties of F (x):
First, F (x) is monotonically increasing: ∀x ∈ {1, 2, ...,M},
we have F (x+1) ≥ F (x); second, F (M) = 1; third, F (0) <
1, since F (0) = 1 means that the interferer will definitely not
impact any AP which is not true in practice. Then we can find
a constant a ∈ {0, 1, 2, ...,M − 1}, such that F (a + 1) = 1
and F (a) < 1; therefore,

m ≥ E(m̃) = M − FN−1(M − 1)− ...− FN−1(0)

≥ M − 1 · (M − a− 1)− (a+ 1) · FN−1(a)

= (a+ 1)(1− FN−1(a))

, (a+ 1)(1− bN−1), (17)

where a = supF (x)<1 x, b = F (a) are both determined by the
aggregated radio propagation environment and independent of
N and m.

Note that the concrete form of the bounds for the total
number of impacted APs is highly dependent on the ag-
gregated radio propagation environment, which is reflected
by the parameters a, b and c; however, the values of the
three parameters are just dependent on m̂r⃗(r⃗∗), which can be

obtained by merely investigating how one interferer impacts
the system, instead of examining all possible scenarios with
N − 1 interferers.
B. Determine the Environment Dependent Parameters

We here present procedures to obtain values of the three
parameters so that our theory can be verified in practice. The
basic idea is to first construct m̂r⃗(r⃗∗) as a discrete function
through practical measurements, and then derive values of the
three parameters.

There are many possible values of r⃗, but we only select
some special locations for measurement in practice. This
is based on an important observation: the longer distance
between the T-R pair, the larger interference region of the T-R
pair will be. This is intuitive since the closer the transmitter
is to the receiver, the less likely the AP will get interfered
by others, and a larger interference region means that the
corresponding AP is more likely to be impacted; therefore,
we only need to study the locations that are the nearest to
and farthest from all APs. The resulted values of m̂r⃗(r⃗∗) for
such locations will lead to extreme values of m, which can be
used for deriving the scalability bounds of the fingerprinting
localization system.

We place k mobile devices at those special locations
r⃗1, r⃗2, ..., r⃗k, and let an interferer stand in different reference
points. Then the mobile devices can measure the observed RSS
with respect to different APs as the location of the interferer
r⃗∗ changes. Given a value of r⃗∗, each mobile device can
compare the observed RSS of each AP with that stored in
the training phase, based on which the number of impacted
APs can be recorded. In this manner, the m̂r⃗(r⃗∗) in the
form of a discrete function can be obtained. Then we have

a = maxr⃗∗ m̂r⃗j (r⃗
∗) − 1, b =

||{r⃗∗|m̂r⃗j
(r⃗∗)=a,r⃗∗∈S}||

||{r⃗∗|m̂r⃗j
(r⃗∗∈S}|| and

c = E(m̂r⃗i(r⃗
∗)), according to the analysis above.

V. MAIN RESULTS

Theorem 3. For the indoor localization system with M
APs distributed along boundaries of the region S, which is
designed to support N users, the localization reliability of the
system R′ satisfies that

e−Θ(ϕ(N))(1− e−Θ(ϕ(N))) ≤ R′ ≤ 1− e−Θ(φ(N)), (18)

where {
ϕ(N) = M2

(1−A2)min{c(N−1),M}+A2M ,

φ(N) = M2

(1−A2)(a+1)(1−bN−1)+A2M
,

(19)

a, b, c can be obtained by the procedure described above and
A is the ratio of variances mentioned in Theorem 1.

Proof: We can obtain Theorem 3 by combining Theo-
rem 1 and Theorem 2. With Theorem 1, we have

e−Θ(g(m))(1− e−Θ(g(m))) ≤ R′(E) ≤ 1− e−Θ(g(m)), (20)

where g(m) = M2

(1−A2)·m+A2·M and A < 1;
Note that the RHS of the inequality above is a monoton-

ically decreasing function with respect to m, then we must
choose m’s lower bound expression about N to obtain the
final upper bound of R′(E) with respect to N . A careful



examination of the LHS of the inequality reveals that the
LHS can be either monotonically decreasing or first increasing
and then decreasing with respect to m, if we do not consider
the physical meaning of the inequality. However, since the
reliability R′(E) will definitely decrease with the number of
impacted APs m increases, the LHS must be monotonically
decreasing with m; therefore, we have to choose m’s upper
bound expression about N to obtain the final lower bound of
R′(E) with respect to N . According to Theorem 2,we have:
(a+ 1)(1− bN−1) ≤ m ≤ min{c(N − 1),M}.

Consequently,

e−Θ(ϕ(N))(1− e−Θ(ϕ(N))) ≤ R′ ≤ 1− e−Θ(φ(N)), (21)
where {

ϕ(N) = M2

(1−A2)min{c(N−1),M}+A2M ,

φ(N) = M2

(1−A2)(a+1)(1−bN−1)+A2M
,

(22)

and a, b, c can be obtained by the procedures described in the
previous section and A is the ratio of variances mentioned in
Theorem 1.

VI. EVALUATIONS OF MAIN RESULTS

A. Numerical Results

We here verify the main results by examining the trends of
both the upper and the lower bound of R′ as N increases.
To obtain the numerical results of the bounds, we first need
to obtain the environment dependent parameters a, b and c
following the procedures presented in Section IV-B.

We set up the testbed in a square 100m2 gymnastics room,
which is gridded into 1m × 1m cells. We uniformly deploy
12 mobile Wi-Fi APs along the edges of the room. This
is to create a comparatively ideal environment to eliminate
unexpected interference from unnecessary details. We choose
two special locations to derive the discrete function m̂r⃗i(r⃗

∗):
the geometric center and a corner of the room denoted by
r⃗1 and r⃗2 respectively; because it is easy to mathematically
prove the center is the nearest point to all APs’ and the corner
is the farthest. Figure Fig. 5(a) and Fig. 5(b) show the results
when placing the receiving mobile devices in the corner and at
the center of the room respectively, where the different colors
mean the total numbers of impacted APs observed when the
interferer is at different RPs in the room. Based on such results,
we have E(m̂r⃗1(r⃗

∗)) = 5.76 and E(m̂r⃗2(r⃗
∗)) = 6.92, thus

a = 8, b = 0.96, c = 6.92.
With the environment dependent parameters, we could pro-

file the trend of upper and lower bound. Since the expression
with respect to Θ(·) just characterizes the shape of the bounds,
we must determine values of k∗1 and k∗2 of Θ(·) before
obtaining concrete bounding curves. We take the equations
from both sides of the inequalities of Theorem 3. For the
upper bound, we let R′ = 1 − e−k∗

1φ(N) equal the highest
reliability observed when N = 1 in the offline phase, then
we could find the value of k∗1 ; for the lower bound, we let
R′ = −k∗1ϕ(N)(1 − e−k∗

2ϕ(N)) equal the lowest reliability
when N = 1, 2 in experiments of obtaining a, b and c, then
we could find the values of k∗1 and k∗2 as ϕ(N) can be
obtained once the value of N is fixed. Figure 5(c) and Fig. 5(d)
show the numerical results of the upper and lower bound

of R′. Figure 5(e) shows the total number of impacted APs
as N increases. We can see that as the number of impacted
APs increases, the localization reliability decreases, which is
realistic.
B. Experimental Results

We now present the experimental results for localization,
which is compared with the derived theoretical bounds. We
first traverse each cell of the area and record the corresponding
RSSs of each AP to construct the radio map. We next let
one normal user and one interferer enter into the area walking
around, then we let them stop and record the estimated and real
locations of the user in the presence of the interferer. We repeat
the experiments 100 times under 8 kinds of user distribution,
and then we can find the reliability of location estimation in
the 1-interferer scenario. In this way, we increase the number
of interferers one by one to 10, and then we can find the
reliability of location estimation error in different scenarios.
To calculate the reliability, we need to specify the tolerance
error δ; we consider one-time localization is successful if the
estimated location is in the δ neighborhood of the real location.
In our experiments, we calculate the reliability when δ = 2m
and δ = 3m.

Figure 5(f) shows the experimental results of localization
reliability as N increases under different accuracy standards.
Figure 5(g) and Figure 5(h) show the comparative positions
of the theoretical bounds curves and the experiments curves.
We can see that the experimental results are bounded by our
theoretical bounds, which validates the main results.

We can see the first-increase-then-decrease part of the
reliability curve in those figures. This is primarily caused by
the experimental error. The theoretical reliability is in fact the
expectation of the corresponding localization reliability of all
possible user-distribution scenarios; however, our experiments
only record several scenarios. The curve will be more smooth
if more experiments can be conducted. We also note that the
resulted reliability from the experiments almost achieves the
lower bound when N = 11, because all the 12 APs have been
impacted in this case according to Fig. 5(e). We can expect
that reliability curve will be flat if more interferers were added.
C. Important Observations and Analysis

Observation 1: Localization reliability drops dramatically
before the number of users increases to a critical point and
then decreases smoothly, where the critical point tends to
appear when the number of users equals that of APs deployed
in the region. With Fig. 5(c) and Fig. 5(d) showing the
trend of upper and lower bounds of R′, we can see that
R′ decreases as the number of users N increases, because
more people in S means there are users in the interference
region between the AP and the normal user with a higher
probability; however, it is notable that the overall trends of
R′ first drop dramatically as N increases to a critical point,
and then decrease smoothly. This observation can be explained
as following. When the number of users in the system is
small, adding a new-coming user can dramatically impact the
radio propagation environment; however, if there have been a
number of users in the system, it is likely that most of the



(a) Num. impacted APs when the in-
terferer in different positions

(b) Num. impacted APs when the in-
terferer in different positions

(c) Numerical results with initial reli-
ability at 90%

(d) Numerical results with initial reli-
ability at 50%

(e) Num. impacted APs (f) R′ w.r.t N (g) Experimental and numerical re-
sults, δ = 3

(h) Experimental and numerical re-
sults, δ = 2

Fig. 5. Experimental and numerical results

APs have been impacted, thus adding a new-coming user will
make the change of the radio propagation environment not that
dramatic.

However, it is difficult to find the exact value of the critical
point. Observing the trend shown in Fig. 5(c) and Fig. 5(d), the
values of the critical point for the upper and lower bound are
different. This is reasonable since the upper bound indicates
the best case, where more interferers can be tolerated, but the
lower bound indicates the worse case, where it is intolerant
to interferers. This is why the critical point for the lower
bound appears much earlier than that for the upper bound.
The experimental results as shown in Fig. 5(g) and Fig. 5(h)
provide some hint for finding the critical point: it seems that
the value of the critical point is around the value of M , the
number of APs deployed in the region. This also makes sense
to some extent because all the APs could be impacted if
N = M , with each interferer impacting an AP.

Observation 2: Even if the number of users N → ∞, the
fingerprinting localization system still retains certain level of
reliability. Our experimental results corroborate our theoretical
results; however, what will be the resulted reliability if we keep
increasing the number of users N? It is difficult to experiment
the scenario of N → ∞, but Theorem 3 has shed some light
to the answer.

With Eq. (18)-(19), we have R′ ≥ e−k∗
1ϕ(N)(1−e−k∗

2ϕ(N)),
where ϕ(N) = M2

(1−A2)min{c(N−1),M}+A2M and the parame-
ters c, k∗1 , k

∗
2 are all independent of the number of users N

in the system, but could be related to the number of all APs
M . When N → ∞, ϕ(N) = M2

(1−A2)M+A2M = M , thus
R′ ≥ e−pM (1− e−qM ) > 0, meaning the localization system
will still retain certain level of reliability even if there are
infinite number of users.

We now consider the extreme-case lower bound in Theo-
rem 3, which is e−k∗

1M (1−e−k∗
2M ) occurring when N → ∞.

Mathematically, the trend of the worst-case lower bound
can be monotonically increasing or decreasing-first-then-
increasing; however, the only possible trend in practice should

be monotonically increasing. This can be obtained by using
the similar approach of proving Theorem 3. Consequently,
an interesting byproduct of the observation is that: deploying
more APs can improve the extreme-case lower bound.

VII. RELATED WORK

Theoretical work has been done to evaluate the performance
of fingerprinting based indoor localization systems; however,
the main focus is on the accuracy and reliability. Cramér-
Rao Bound (CRB) analysis can provide a lower bound on
the variance achievable by any unbiased estimator, which is
utilized to evaluate accuracy of the fingerprinting localization
[22]. The derived performance bound is compared with ex-
perimental results; however, the comparison indicates that the
derived CRB is inaccurate [23], which is due to the inaccurate
modeling of radio propagation.

Wen et al. propose a general probabilistic model to eval-
uate the accuracy and reliability of the fingerprinting based
localization systems [11], where the probability of correct
location estimation can be obtained given the requirement of
accuracy. The radio propagation model in [11] is a generalized
log-normal path loss (LNPL) model containing the effects of
major radio propagation characteristics, based on which the
location estimation process is modeled as a mapping from the
fingerprints sample space to the physical space. In contrast to
[11] assuming the observable fingerprints are static, our work
in this paper takes the deviation of observable fingerprints in
the online phase into account, which is introduced by presence
of users.

Tian et al. evaluate how the imperfect fingerprints database
will impact the reliability and accuracy of the fingerprinting
based localization systems [12], where the imperfect fin-
gerprints database results from the adoption of unreliable
crowdsourcing paradigm in the offline phase. The work in [12]
presents a very preliminary analysis on how the deviation of
the mean will impact the localization performance only for
the 1-D localization case. In contrast to [12], our work in this



paper is based on a revised reliability model, and we present
complete and rigorous analysis on the high-dimensional sce-
nario in both sample and physical space. Our work in this
paper initiates the study of scalability on the fingerprinting
based localization.

VIII. CONCLUSIONS

In this paper, we have studied the scalability issue of the
fingerprinting localization system in a theoretical perspective,
where the upper and lower bound of the system’s localization
reliability with respect to the number of users are derived. The
theoretical and experimental results of this work have revealed
two interesting observations that shed light on the insight
into the scalability of the fingerprinting localization system:
First, the localization reliability drops dramatically before the
number of users increases to a critical point and then decreases
smoothly, where the critical point tends to appear when the
number of users equals the number of access points (APs)
deployed in the service region; second, even if the number
of users approaches to infinity, the fingerprinting localization
system still retains certain level of reliability.

IX. ACKNOWLEDGEMENT

The work in this paper is supported by the National
Key Research and Development Program of China 2017YF-
B1003000, and National Natural Science Foundation of China
(No.61572319, U1405251, 61532012, 61325012, 61428205).

REFERENCES

[1] Z. Yang, Z. Zhou and Y. Liu, “From RSSI to CSI: Indoor localization
via channel response,” ACM Comput. Surv., vol. 46, no. 2, pp.1–32,
2013.

[2] S. He and S. H. G. Chan, “Wi-Fi fingerprint-based indoor positioning:
Recent advances and comparisons,” in IEEE Communications Surveys
& Tutorials, 2016, pp. 466-490.

[3] P. Bahl and V. N. Padmanabhan, “Radar: An in-building RF-based user
location and tracking system,” in Proc. IEEE INFOCOM, 2000, pp.
775–784.

[4] A. Haeberlen, E. Flannery, A. M. Ladd, A. Rudys, D. S. Wallach and
L. E. Kavraki, “Practical robust localization over large-scale 802.11
wireless networks,” in Proc. ACM MobiCom, 2004, pp. 70–84.

[5] M. Youssef and A. Agrawala, “The horus wlan location determination
system,” in Proc. ACM MobiSys, 2005, pp. 205–218.

[6] K. Chintalapudi, A. Padmanabha Iyer and V. N. Padmanabhan, “Indoor
localization without the pain,” in Proc. ACM MobiCom, 2010, pp. 173–
184.

[7] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan and R. Sen, “Zee: zero-
effort crowdsourcing for indoor localization,” in Proc. ACM MobiCom,
2012, pp. 293–304.

[8] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen and F. Ye, “Push
the Limit of WiFi based Localization for Smartphones,” in Proc. ACM
MobiCom, 2012, pp. 305–316.

[9] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen and F. Ye, “Accurate
WiFi Based Localization for Smartphones Using Peer Assistance,” IEEE
Transactions on Mobile Computing , vol. 13, no. 10, pp.2199–2214, Oct.
2013.

[10] C. Wu, Z. Yang and Y. Liu, “ Smartphones based Crowdsourcing for
Indoor Localization,” IEEE Transactions on Mobile Computing , vol. 13,
no. 10, pp.2199–2214, Oct. 2013.

[11] Y. Wen, X. Tian, X. Wang and S. Lu, “Fundamental limits of RSS
fingerprinting based indoor localization,” in Proc. IEEE INFOCOM,
2015.

[12] X. Tian,R. Shen,D. Liu,Y. Wen and X. Wang, “Performance Analysis of
RSS Fingerprinting Based Indoor Localization,” IEEE Transactions on
Mobile Computing, 2016. Online:http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=7797481.

[13] Z. Yang, C. Wu, Z. Zhou, X. Zhang, Y. Wang and Y. Liu, “Mobility
Increases Localizability: A Survey on Wireless Indoor Localization using
Inertial Sensors,” ACM Comput. Surv., vol. 47, no. 3, Article 54, Apr.
2015.

[14] M. Kotaru, K. Joshi, D. Bharadia and S. Katti, “SpotFi: Decimeter Level
Localization Using WiFi,” in Proc. ACM SIGCOMM, 2015, pp. 269-282.

[15] S. Kumar, S. Kumar S and D. Katabi, “Decimeter-level localization with
a single WiFi access point,” in Proc. USENIX NSDI, 2016, pp. 165-178.

[16] L. Yang, Y. Chen, X. Li, C. Xiao, M. Li and Y. Liu, “Tagoram: Real-
Time Tracking of Mobile RFID Tags to High Precision Using COTS
Devices,” in Proc. ACM MobiCom, 2014.

[17] K. Liu, X. Liu and X. Li, “Guoguo: Enabling Fine-Grained Smartphone
Localization via Acoustic Anchors,” IEEE Transactions on Mobile
Computing, vol. 15, no. 5, pp.1144–1156, May 2016.

[18] KAILOS, https://kailos.io/.
[19] G. Shen, Z. Chen, P. Zhang, T. Moscibroda and Y. Zhang, “Walkie-

Markie: Indoor pathway mapping made easy,” in Proc. USENIX NSDI,
2013, pp. 85–98.

[20] C. Luo, H. Hong and M. C. Chan, “PiLoc: a self-calibrating participatory
indoor localization system,” in Proc. IEEE IPSN, 2014, pp. 143–153.

[21] E. Elnahrawy, X. Li and R. P. Martin, “The limits of localization using
signal strength: A comparative study,” in Proc. IEEE SECON, 2004, pp.
406–414.

[22] G. Chandrasekaran, M. A. Ergin, J. Yang, S Liu, Y. Chen, M. Gruteser
and R. P. Martin, “ Empirical evaluation of the limits on localization
using signal strength,” in Proc. IEEE SECON, 2009.

[23] A. M. Hossain and W. S. Soh, “Cramer-rao bound analysis of local-
ization using signal strength difference as location fingerprint,” in Proc.
IEEE INFOCOM, 2010.

[24] T. V. Haute, E. D. Pooter, F. Lemic, V. Handziski, N. Wirström, T. Voigt,
A. Wolisz and I. Moerman, “Platform for benchmarking of RF-based
indoor localization solutions,” IEEE Communication Magazine, vol. 53,
no. 9, pp. 126–133, 2015.

[25] T. V. Haute, E. D. Pooter, I. Moerman, F. Lemic, V. Handziski, A.
Wolisz, N. Wirström and T. Voigt “Comparability of RF-based Indoor
Localization Solutions in Heterogeneous Environments: An Experimen-
tal Study,” Int. J. Ad Hoc and Ubiquitous Computing, vol. 23, nos. 1/2,
pp. 92–114, 2016.

[26] S. Obayashi, J. Zander, ”A body-shadowing model for indoor radio
communication environments View Document”, IEEE Trans. Antennas
Propag., vol. 46, no. 6, pp. 920-927, June 1998.

[27] M. Ayadi, A. Zineb, ”Body Shadowing and Furniture Effects for
Accuracy Improvement of Indoor Wave Propagation Models”, IEEE
Trans. Wireless Commun., vol. 13, no. 11, pp. 5999-6006, Nov. 2014

[28] I. Kashiwagi, T. Taga, T. Imai, ”Time-varying path-shadowing model
for indoor populated environments view document”, IEEE Trans. Veh.
Technol., vol. 59, no. 1, pp. 16-28, Jan. 2010.

[29] H. Hashemi, “Impulse response modeling of indoor radio propagation
channels,” IEEE J. Sel. Areas Commun., vol. 11, no. 7, pp. 967–978,
Sept. 2006.

[30] M. Youssef and A. Agrawala, “Handling samples correlation in the
Horus system, in Proc. IEEE INFOCOM, 2004.

[31] M. Youssef, M. Abdallah and A. Agrawala, “Multivariate analysis for
probabilistic WLAN location determination systems, in Proc. the Second
Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2005.

[32] International Telecommunication Union(ITU), “Guidelines for evalua-
tion of radio interface technologies for IMT-Advanced”, in Report ITU-
RM.2135-1, pp. 30–33, Dec.2009, Online:https://www.itu.int/dms pub/
itu-r/opb/rep/R-REP-M.2135-1-2009-PDF-E.pdf.

[33] WINNER ,“WINNER Channel Models”, IST-4-027756,pp.44–
45,Sept.2007, Online:http://www.cept.org/files/1050/documents/
winner2%20-%20final%20report.pdf.

[34] J. Wang, D. Fang, Z. Yang, H. Jiang, X. Chen, T. Xing and
L. Cai, “E-HIPA:An Energy-Efficient Framework for High-Precision
Multi-Target-Adaptive Device-free localization,”IEEE Transactions on
Mobile Computing, 2017. Online:http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=7469386

[35] J. Wang, H. Jiang, J. Xiong, K. Jamieson, X. Chen, D. Fang and B. Xie,
“LiFS: Low Human Effort, Device-Free Localization with Fine-Grained
Subcarrier Information,” in Proc. ACM MobiCom, 2016.

[36] Technical Report, online https://www.dropbox.com/s/u83yyj56mnhe6sh/
Secon%202018-Capacity-TechRep.pdf?dl=0.


